Dithering by Differences of Convex Functions
نویسندگان
چکیده
Motivated by a recent halftoning method which is based on electrostatic principles, we analyse a halftoning framework where one minimizes a functional consisting of the difference of two convex functions (DC). One of them describes attracting forces caused by the image gray values, the other one enforces repulsion between points. In one dimension, the minimizers of our functional can be computed analytically and have the following desired properties: the points are pairwise distinct, lie within the image frame and can be placed at grid points. In the two-dimensional setting, we prove some useful properties of our functional like its coercivity and propose to compute a minimizer by a forwardbackward splitting algorithm. We suggest to compute the special sums occurring in each iteration step by a fast summation technique based on the fast Fourier transform at non-equispaced knots which requires only O(m logm) arithmetic operations for m points. Finally, we present numerical results showing the excellent performance of our dithering method.
منابع مشابه
Dithering in a Simplex
Color Halftoning, Dithering. This report introduces the problem of dithering in a simplex, and suggests a few possible solutions. In general, dithering can be viewed as a method for describing color images using a combination of allowed output colors. Usually the convex hull of the set of allowed output colors is a cube in the color space. However, there are cases when the convex hull is a simp...
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملOn the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 4 شماره
صفحات -
تاریخ انتشار 2011